
                       

Section 3 
Viscoelasticity; (still in scalar form; no tensors yet!) 

 
In this section we consider the issue that our material may be 
viscoelastic. That is the material can exhibit both viscous and elastic 
properties at the same time. Viscoelasticity is important, particularly for 
polymers both in the solid and liquid state. The approach is mostly 
directed at the liquid (melt) state, however the mathematical analysis is 
also relevant to viscoelastic solids. Viscoelasticity is relevant to polymer 
melts, concentrated biotech solutions such as xantham gum. It is also 
relevant to certain foodstuffs (custard, sauces), personal products  
(shaving cream, lotions, shampoo), and a range of other materials, such 
as explosives, rocket fuel & certain natural materials.  
An understanding of viscoelasticity is useful in relation to help 
understand certain processing issues, in addition it is useful in 
characterising rheologically complex materials. This is important in 
terms of quality control. 
The mathematics involved in the modelling is relatively simple but needs 
a bit of thought. The modelling is highly suitable for setting Tripos 
questions! 

 
Processing issues where viscoelasticity is important. 
 
1 Processibility. 
 
 
 
 
 
 

pellets 

post processing 
Rheology 

extruder Extrusion line must work 
24hrs/day 

die 
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2  Die swell 
 
 

 = Di/Do 

 
 
 
 

Do Di 

Newtonian  = 1.14 

Viscoelastic fluid  = 1 – 5    big factor when making tubes 

 
 
 
 
 
 
 
 
 
 
 
 
 
3 Extrusion Instabilities 

production rate  
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

sharkskin – optically observed
Usually bad, sometimes good 
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Rheometers. 
Cone and Plate Rheometer 
 
 
 
 
 
 
 
 
Parallel Plate Rheometer 

Rotation or  oscillation 

Torque 

1.5 mm 

Cone angle = 14 0 

 
 
 
 
 
 
 
 
 
Couette Rheometer 
 
 
 
 
 
 
 
 
 
 
 

Rotation or oscillation 

Torque

Rotation or oscillation 

Torque 

30 mm 

12 mm

22 mm

20 mm

1 mm 
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Viscoelasticity measurement 
Parallel plate or cone and plate rheometers. 
A device where ideally the strain or stress is uniform. 
 
 Apply strain ,  measure stress.           Controlled strain rheometer A) 

 
Or      Apply stress ,  measure strain.    Controlled stress rheometer 
 
TA Ares, Controlled strain rheometer.  
      

B) 

yield stress –  
£20,000-50,000/machine

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

stepper motor 

Sample  
Between  

25 – 50 mm 
plates 

Upper shaft measures torque 

To transducer

To motor

Sample

Mode 1

Mode 2

Mode 3

To transducer

To motor

Sample

Mode 1

Mode 2

Mode 3

Lower 
shaft to 
stepper 
motor 

Torque measurement  
Force rebalance transducer  

h ~ 0.3-1 mm 
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(1) Steady 
 (angular velocity) 
 

(2) Oscillate 
 (angular frequency) 
γ (strain) 
 

(3) Step strain 



                       

Different test geometries. 
 
   Parallel plate geometry   Cone and plate geometry 
 

 

r

difficult to achieve 
close fit between 
plates without 
damaging equipment 



r tan 

r 

r
r 

h 

h

 

   

radiuson  dependboth 
h

ωr 
  γ ratestrain 

h

φr 
 strain  γ





       

radiuson t independanboth 
αtan 

ω
 

r  tanα

ωr 
  γ ratestrain 

tanα

φ
  

r tanα

φr 
 strain  γ





  

                    
 

h 

γ  

r tan α 

γ 

 
 
 
 
 
 Rφ bottom plate Rφ bottom plate 

 
γ = rφ 

r tan α 

Strain rate independent of r 
This is the best option, but 
often parallel plates are used

=        φ
tan α 

γ = rφ 
h 

 
 
 Stain rate depends on r 
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Rheometers measure Torques; so we need to express Torque in terms of 

fluid shear stress. r1 r1 

0 

 =     r  rdr  = 2      r2 dr Cone and plate 
 

0 
 

                                                                              r  
3

2
  3

1  

Force 

r1 

 

Parallel plate more tricky because  is a function of r. 
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Rheological “ Rheometric” measurements. 
 
We now examine the types of deformation that can be applied using, for 
example, a Rheometrics controlled strain rheometer. 
 
 
a) Stress growth, steady shear, stress relaxation 
 
 
 

Strain 
rate 


Stress 


time

time

t = 0 t = t
 
 1

Newtonian

Stress growth

Steady state

Stress relaxation

 
 0

Start from 
rest,  = 0 

A C 

B

 t < 0    

  =  0

t > 0   

  =  


 o  

t > t1    


  =  0

measure stress as a function of time for above strain rate history. 
 
 

(A) Stress growth   (Viscoelastic response) 
 
(B) Steady shear   (Non Newtonian behaviour)? 
 
(C) Stress relaxation   (Viscoelastic response) 

 
 
 
 
 
 

Time dependence can be explored  
 
Steady shear is the most used deformation, obtain “flow curve” 
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b)  Step strain 
At t= o, instantaneously strain material by  t , subsequently measure 

. 

stress relaxation as a function of t 
 

Strain 
rate 


Stress 


time

time

t = 0

Stress relaxation

 
 0

γ0 = γ0 t  Step in strain . 

0 

 

 Relaxation modulus G(t) 
 
G(t) = (t) 

γ0

 

 

 

 Elastic rubber 

Viscoelastic response 

t 

0 

 

1/e 

Often exponential 

 

 

 

 

 

 

 

 Characteristic relaxation time 
10-3 – 103 s  

 

 

CET 2B. Section 3, Viscoelasticity-2011          8



                       

c. Oscillatory “rheometric” deformation 

 

 

 

 

 

Apply  = o sin t                       Strain      ti
oe   =   

Time dependence 

 
0 

 
γ 
γ0 γ 

γ0 
. 
.  

strain angular frequency 

then = o  cos t   Strain rate       

 ti

oe  i =   

measure  = o sin(t + ) 

o = max strain amplitude,        typically  0.1    (10%) variable 

 = angular frequency,            typically 10-2 – 103 rad/s 

   cos t                   or                       o  = 


ti
oe

 i = 

    

 = osin(t + )     or                =   oe
i t +   

       = o sin t cos              + o cos t sin 

                      

component of stress            component of stress 

in phase with                      in phase with 

  

Elastic bit!                      Viscous bit! 

 

Defn  = G’ o sin t     +        G’’ o cos t 

So G'  =  
o
 o

cos ,                        G" =  
o
 o

sin  Pa 

 α strain 

~ 1 hour to complete 
the experiment 

 limit of oscillator 

  Storage Modulus                            Loss Modulus 

Elastic Viscous  
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Complex modulus G*     (another way of saying the same thing). 
 = G* γ 

 

           
 t 
 t 

 =  G =  G' +  iG" =  
oe

 oeit

i t +  
 

                 
          Elastic     Loss 
       Modulus     Modulus 

So     G'  +  iG"  =  
o
 o

e i   

  now (e I =  cos + i sin )     

So  
'G  =  

o cos 
o

   G" =  
o

o
sin  N/m2 

As before 
 

So                  

 
ti*

000 eGor                 tcos''Gtsin'G 
 
Another definition 
 

For a given strain, γ0 if we know 0 and  from the rheometer  
 

Complex viscosity                =  
G' 2 +  G"2 

1
2


     Pas  

dimensions of viscosity 

 

For given , and known o. G’  :- Storage modulus 
G’’ :- Loss modulus 
η* :- Complex viscosity 

 
 
 
These properties capture the viscoelastic properties of a material, but the 
values will depend on the test frequency ( time scale applied). 
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Measure o and  using TA instruments rheometer or other instrument, then 
we know the following, for a given 
1.  G’ storage modulus.     2.  G” Loss modulus.  3.   *Complex viscosity 

 

Angular frequency of oscillation
10-3 

Storage Modulus 


*

G’

G’’
Cross over 

G’’ dominates 

Loss Modulus 

  rads/sec 
103 

G’ dominates 

104 

G’ & G’’ (Pa) 
η* (Pa s) 

10-1 

 

Rheometer measures Torque and from this we need shear stress  

Typical viscoelastic data that we wish to model. (See appendix) 

1. Oscillatory Viscoelastic response. 
linear viscoelastic response ,γ

 

G’

G’’

Strain 

at fixed frequency

angular frequency 

at fixed strain

G’

G’’


*

0 ~ 1 rads/sec γ0 

10-3 103

10

104

non linear 

10-2 102

linear 
region 

Strain sweep 
Frequency sweep
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2. Steady Shear 

 

shear rate

Apparent  
viscosity 
 

 a

104 

10 

(Pa s) 

Linear region

shear thinning

Carreau

γ . 

 
              Silly Putty; real data. 

Silly Putty frequency sweep, strain = 1%, 160204

1

10

100

1000

10000

100000

1000000

0.01 0.1 1 10 100

Frequency  / rad.s-1

G
' /

 P
a

, G
" 

/ P
a

, 
* 

/ P
a

.s

G'

G"


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Modelling of viscoelasticity 
We are going to build a model that, eventually is going to be able to predict 
both the linear viscoelastic and non linear shear thinning behaviour of a 
viscoelastic material such as a polymer melt. 
Stage 1 The linear viscoelastic part 

Coupling of linear viscous and elastic elements 

The Maxwell element series coupling of elastic and viscous component 

 

Maxwell often favoured for stress relaxation 

The Voigt element. 

 

Voigt often favoured for creep (constant  stress experiments) 

We will follow Maxwell, but you should “play with” Voigt model. 
 

The Maxwell Model  (Differential form) 

 
1γ1 2γ2 

parallel coupling

η viscosity elastic constant g 

linear dashpotlinear spring

 = η γ . 

viscous 

γ = γ1 = γ2 
 = 1 + 2 

(, γ) 

       Local (1, 1)       (22) 

entropy            elastic 

viscous friction of chain 

    1 = g 1        2 =  

 2

 

Coupling  =  1 = 2  Stress continuity 
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   =  1 + 2  Strain additivity 

 Then  

  =  


1  +  


 2

1 = 2 =   

Governing ordinary differential equation relaxation times (s) 
 
 = η (Pa s) 
      g (Pa) 

  
d
dt

 =  
d
dt

1
g

    +  



     or  

 where the relaxation time of the element     is given by /g,  (s) 

g
d
dt

 =  
d
dt

    +  



1st order ODE Maxwell equation

Example.  Response of Maxwell element Spring and dashpot in series

a..Steady shear 

 
 = gγ 
 = ηγ .

.

 

 

   
d
dt

 =  0        Then         =  

 0

 

γ . 
t

d = 0 
dt 

t

Linear response, Newtonian.  We will have to make the model Non 

Newtonian later 

Maxwell model predicts Newtonian behaviour in simple 
shear.Most complex VE Fluids are shear thinning and so we 
will have to fix this later.

 

 

b. Stress relaxation after steady shear 

 = 0
-[ e t-t

0
]/

 = ηγ0e
-[t-t

0
]/ . 

d  =  -  
dt           

d =  - dt 
            

 

0 

t 

t0 

    =  

 0  e


t -  t

0 
  

γ = 0 .
γ0 
. 

t0 

 

γ .  
t

 

 t

 exponential decay 
time constant , 10-3 - 103 

All elastic       ∞ 
All viscous       0 
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c. Oscillatory motion. (Important and frequently used) 

Use complex notation 
Variables (γ0, )  t  =   oeitApply 

     

 t  =  i oeit

 (t) =   oei (t  ) 

* i 

Measure 

Strain rate 

t  G'  +  iG'' =
 

                  
d t 

dt
 =  i G'  +  iG"   o ei t  

Remember,                  g
d
dt

 =  
d
dt

 +  



,             so, 

 

gi oei t  =  i G'  +  G"  o ei t  +  
1


G'  +  G"   oeit ]  

Yields 

 G'  =  
g22

1 +  22  ,    G" =  
g

1 +  22  ,    * =  
g

1 + 22 1 /2   

 

 

 

 (t) =  G  0 e     0  ei  t

Maxwell equation 

Substitute for γ,  

i i 

  0 G’ 0  0 G’’ 0  0 η* = g = η 
  ∞ G’ g  ∞ G’’ 0  ∞ η* 0 

angular frequency 


* G’

G’’

G’ & G’’ (Pa) 
η* (Pa s) 

Elastic 
domination 

Elastic  

Shear thinning  

complex viscosity 

Loss  

viscous 
domination 

Newtonian Plateau 

cross over 
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A bit of maths. Differential equations versus integral equations. 
 

l Model  (Integral form wrt strain rate) 
Differential equation 

   

The Maxwel




 +  
d
dt

 =  g
d

 =  

g

    
dt

Multiply by integrating factor 

   



e t   +  et  d
dt

 =  g
d
dt

e t   

assume  = 0 at t’ =- 

    current time 

                            et   =  g et' 

-

t
  


 t'  dt '  

    Past time 

                            t  =  g e
- t - t' 

-

t
  


 t'  dt'  

Maxwell equation in terms of past strain rate – current stress depends on 

ast strain rate. 

1st order ODE 

d  (et/)    =    et/ + et/   d
dt                                     dt

Stress at current time strain rate at past time t’  

p

 

 

 

 

 

 
 
 
 
 
 
 

applied strain rate 

 = 0 

t’ = - ∞  

start the clock

t’ = t’

e

t’ = t

t

 

past tim  (variable) curren  time 

t’ = 0

 (t) =   g e-(t-t’)/ γ(t’)dt’ .

Fading memory 
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est strain rate equation   Steady shear T
 


 
 0

t’= 0t’ = t’ = t

        

                           t  =  g e
 t - t'  



t



 t' dt'  

 t  =  g

 o e

 t -  t'  


t
 dt'  

                                          g

 o  

-

t

 e
- t - t' 










 =   g  


 o 

                                   ss  =  

 o             as before 

 
 other shear deformations as the differential Maxwell 

quation. 

 
 

past time current time

- ∞ 

. 
. 

current time t is a constant 

 
 
 
 
 
 
 
 
 
 
 
The integral Maxwell strain rate equation gives the same result in
steady and
e
 
 

 (t) =  ge-(t-t’)/γ0dt’ 
 
 
       =  gγ dt’ 

     =  g e e ] 

     =  g  

     =  ηγ0 

0e
t’/

-t/ t’/

-t/   e
 
 
  γ0

 [
 
  γ0

 

t 

-∞ t 

-∞ 
t

-∞

.

. 

. 

. 

Newtonian as before 

 = η 

. 

.
       g 
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Integral Maxwell in ter s of past strain rate. General 

eformations. 
m

d
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 0

t’= 0t’ = t’ = t

past time current time

stress

strain 
rate

- ∞ t’ = t2 t’ = t1 

γ1 
.

γ2 
.

I 

II

III 

IV 

.

 (t) =  ge-(t-t’)/ γ (t’)dt’   = 0 

 γ1 dt’ = γ dt’ 

   t = t1 then  = 1 

)/ γ1 
-(t-t’)/ γ2 dt’   

)/ γ1 
-(t-t’)/ γ2 

)/ dt’   

   Exponential decay 

 
 
 
 (t) =  ge-(t-t’)/

1 g
   et’/e-t/

 
 
  If
 
 
 (t) =      +   ge-(t-t’ dt’  +  ge
 
 
  

 (t) =      +   ge

  If t = t2 then 2

 
 =   

dt’+      ge -(t-t’ dt’  +  ge -(t-t’

 
 

t 
.

.

I 

II 

III 

IV 

-∞ 

t t 

0 0 

0 

-∞ 

t1 

0 

t 

t1 

. .

..
0 

-∞ 

t1 

0 

t2 
t 

t2 t1 
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Lets integrate again in order to  obtain the Maxwell integral strain 
quation. 

 
he Maxwell Model  (Integral form wrt strain) 

e

T
We know, 

   t  =  g


t
   e

 t - t'  
 

d
dt'

 dt'  

    Now    udv =     uv - 
 

 vdu 

let             u =  ge
 t - t'  ,       dv =  d  

integrate above by parts, 
 

                      t  =  g e
 t - t'  










 

 -  

t
g


 
t
 e

 t -  t'



   t, t'  dt'  

here strain is given by 

      

  

 where  t =current time and t’ = past time 

are measuring strain from current time 
So 

 
 

w
 
 

    ""
'

'     = , dtttt
t


  

t
    
Note when t’ = t   = 0 
We 

 

 t  =  -  
g


t
   e

 t - t'   t ,  t ' dt'  

Stress at time t 

[  ] 

strain  strain  

Two strain terms 
Define strain  Strain = 0 at current time t 

Integral Maxwell equation – past strain  

Past strain history  

 
 
 
 
 
 

Stress at time t  

γ(t,t’) =   γ(t’’)dt 

t’ 

t 

. . 

t’= t  

t’’ 

t’= t’  
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
Test Maxwell strain integral equation.     steady shear   = const 

 

 

By definition                   

For steady shear               


 
 0

t’= 0t’ = t’ = t

past time current time

. 
. 

- ∞  

    ""'    = ,
'

dtttt
t

t


  

Determine past strain history  

   ttdttt '
o

t

o  -  =  = ,
'

"' 


  
t


        = -  o (t – t’ ) 


 
 0

t’= 0t’ = t’ 

 
 
Introduce new variable s,    (you don’t have to do this, but it generally 

akes calculation simpler ). 

et  
t1 

    

m
 
L   s  = t – t1 

 ds = - d
  
 s =   s = t  s = t – t1  s = 0 
           

t’ = - t’ = 0  t’ = t1   t’ = t  

= t

current time

strain 

. . 

. 

. 

t =- ∞  

γ = 0 

ses 

backwards 

t - t’ )

strain increa
negatively 
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Integral strain equation             t  =  +
g


o
   es    o,  s  ds   

Also, strain                           = - 

 o t -  t '  = - 


 o s  

                                   t  = -
g


o
  


 o s es ds  

                                   t  =  
g



 o  s es / 

o
 +  es 



o
 ds









  

  +  g

 o e s                                   



o
 

                                     =  g

 o  =  


 o           Newtonian, as before. 

 the integral 
axwell strain rate equation and the differential Maxwell equation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Integral strain Maxwell equation will predict the same results as
M

 (t) =  -       e-(t-t’)/ γ (t, t’)dt’ 

 (t) =         e-(t-t’)/  - γ0 (t - t’)dt’ 

 (t) = +     γ0 e
- t - t’)et’/λdt’ 

 = η γ0        =       λ g γ0 

 
 
 

 
 
 
 t/   (
 
 
 
 
 
 

t 

-
λ 
g 

∞ 
t 

-∞ 
λ 
g .

g 
λ 

t 
.

-∞ 

integrate by parts 

. .

Newtonian 
i !
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Another example.   Stress growth and stress relaxation. This one is a bit 
more challenging! 
The key to solving these problems is to be clear in your mind what the strain 
rate history is and then determine the correct strain history for the 
appropriate time domain that is of interest to you (or the examiner!) 

I 

II

III 

γ = 0 

.
. 

γ0 
.

- ∞ 

- γ  t 0
. - γ  t 0

.

- γ0 (t – t’) .

- γ  t1 0
. 

γ = 0 - γ  (t – t’) + 0 (t – t1) 0

0
. 

γ.

- γ  (t1 – t’) 

. 


   
 0 

strain 
rate 

t’= 0t’ = t’ = tt’ = t 1
 

 

if current time in sector 2

  

 

I f current time in sector 1

sector 2sector 1

strain 

strain 

 (t) =  -       e-(t-t’)/ (-γ0 t)dt’ -       e-(t-t’)/ (-γ0 (t-t’))dt’    ..

0 

t 
g 
λ 

0 

-∞ 

g 
λ 

 
 
 
 (t) =  -       e-(t-t’)/ (-γ0 t1)dt’ -      e-(t-t’)/ (- 0 (t1-t’))dt’  +     (0)  

t1 

t 
g 
λ 

0 

t1 

.g 
λ 

-∞ 

0 

 
γ.

II 
 
 
 
III 
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Tackle our two further problems 
1.    Multiple relaxation times. One Maxwell element doesn’t 

usually fit the data well. 
2.    Non linear response.  Maxwell elements are linear 

in steady shear and we know interesting fluids can, for example, shear thin. 
 
1.Introduce spectrum of relaxation times 
The parallel coupling of Maxwell elements 
 

  

        
i ~ 3 - 8 

g1       η1  λ1 

 = Σ1 
g2       η2  λ2 

gi       ηi  λi 

 i  =  
i
gi

        

he integral constitutive equation then becomes, 
 

   

 
T

 t  =  -  
gi
 i

 
i


t
 e

 t - t'  i t, t' dt '  

multi-mode 
Maxwell integral 
equation in ter

-
For oscillatory data the equations become. 
 

G'   =  
gii

22

1 +  22 i
 ,       G''   =  

gii

1 +  i
22

ms 
of past strain 

 i
  

  

             =  
gii

1 +  i
2 2 

1
2i

  
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We now need to find the “best fit” g I , his is potentially a tricky 
problem. Use software on Rheometrics to get best fit. 

model fit

exp data

angular frequency

storage 
and  loss 
modulus

g
 
  i


 
  i

 
 

ill posed problem, there are multiple answers 

Eqn 

G’ G’’ 

 
With a spectrum of relaxation times we can get a good fit to linear 
iscoelastic data. 

 
v

G’ G’’ 

 gi to fit G’, G’’ 
his requires software algorithms. 

 

ω 

gi 

1 1 1

Multi-mode modelling gineering predictions  is essential for realistic en

Choose a range of λ  1

Perform least square fit for best fit,
T

0-2 0-1 00

λ1 λ2 λ3 λ4 

x 

x

x 

x 
Polydisperse material 

 101 

 

o 

Experimental data 

Model 

Obtained giλi parameters 
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2.Introduce non linear steady shear response 
 

Mainly due to M H Wagner Rheol Acta 15, 136, (1976) 
one only  

Add a non linear “damping parameter” to constitutive equation.  This 
is best done using the strain integral equation. 
 

 t  =  -
gi
 ii


-

t
  e

 t - t'  i
 e
  k  t,t' 

  t ,t '  dt '  

    This is the new bit! 

strain dependant 
equation 

damping factor 

 
e
  k  t,t' 

 
Modulus 

 
  Modulus (always pos) 
  d ng parameter ampi

 

      Non linear 

   k = 0             Maxwell 
   k ranges from 0    1
       



 t  = - 
gie

t - t  i

i















Time dep of material
  

  e
 k  t,t' 

 
strain dep of

     t, t'  dt'  

en “factored” i rated time and 

 material

 terms of a sepaThe equation has be n
strain dependance. 

 
 

Multi - mode   integral   strain   dependant    
Maxwe

 
ll equation   with   Wagner   damping 

factor 
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The effect of the damping parameter on different deformations 

Steady shear ,  always 

 


 t'  =  


 o


 
 0

t’ = t’ = tt’= 0

past time current time

- ∞ 

 
 
 
 
 
 
 
 
 
 
 
 

   
 't, t'  =  - o t -  t  

 
Let s = (t – t’),  substitution makes calc easier   

        ds = - dt’  

 (o, s) = -


o s  

                     t  =  -
gi
i




o
  es i e

k

 o s 

 o sds  

                      t  =  -
gi
 i

i


o




 

 o e i

ssds 

   where  i =  
1
 i

 +  k

 o  

integrate by parts 

= - γ0 (t – t’)  .

use  s =(t-t’) 

.
. 


   
 0 

t’= 0t’ = t’ = t
current time

strain 

     (Optional) 
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

 o









 =  

gi i


 o

1 +  k i


 o











2

i

                     

                       o  =  
i  











o
2           

 
1 +  k i  o 


  

Check the form of steady shear equation 

) single 

 
 
a  ,    k = 0 

 =  

 o                 Newtonian as before 

 

 

 
 
 
 
 
 
 

 
 

b)      single ,        k  0 

         =  


 o

1 +  k

 o











2  

 

Stress

Strain rate

ste y sheaad r 

Newtonian 

 

Relaxation modes  single mode  or multi-mode 
Non linear k   k = 0   k ≠ 0 

 1 

an k = 0 → Newtoni

       k ~ 0 →

γ .

Max 

decreases – not physically realistic 

γ. 

 

Newtonian 

Non linear – good news 
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c) multiple ,    k = 0 
 

sponse is still linear 

d)   multiple ,   k  0 



Stress

Strain rate

 

linear 3 

2 

re
 
 

 =  
i


 o

1 +  ki


 o











2  

 
 

 
 
This non linear response may match “Power law” Bingham …. Or other 
steady shear constitutive equation. 

Stress

Strain rate

1 

η1 

η2 

 

γ 

good 

λ1 

 = Σ ηi γ 
. 

.

λ2 λ3 

Power law
close to 

 

Non linear 

γ .

 

0 103 s-1 

operating range 
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We now have a model that describes LVE response and the non linear steady 
shear response.   This is what we want! 
 
 Multi-mode Wagner 

Good for predicting  LVE response  
Good for predicting steady shear shear thinning response  

 
But how do we get the value that non linear parameter k? 
 
Use step strain experiments 
 
Step Strain 
 
 

strain t’ = 0 t’ = t

s = o
s = t

 
  0

t’ = - ∞ 

s =  ∞ 

 
 
s < t   = 0 

e-k γ(t,t’) s > t   = -o 
recall 
    γ0 

             t  =  -  
gi
 i

i


t
 e s  i   0ek0  ds  

- 

    iti
i

k eget       = 0
0  

stress at time t 

Relaxation modulus at finite strain 

    iegje
t

tG t
i

i
k

j
j




 

  =  =  

but small strain modulus given by 
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G0 t  =  
 t 
0

 =  gi

i
 e t i  

so                   
 
 tG

tG
e

jk

0
 = 

  

So, measure relaxation modulus at small and large strain and use above 

equation to get k. 

Ratio gives k 

Go(t) small strain 
log G(t) 

G1(t) 

large strain 

G2(t) 

log (t) 
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And finally ( in this section), 
Integral constitutive equation also solves another mystery in polymer 
science 

The Cox Merz Rule 
 

 
 
 shear thinning shear thinning 

angular frequency steady shear rate

Complex 
viscosity

Apparent 
viscosity

x x x x  ηa x  
x  

x  
η* x  

x  
x  η* 

x  
x  

 
 

Cox Merz rule      =  a









 

       where  =  

  

Maxwell model with damping function predicts, 

Complex viscosity.      =  
i

1 +  i
22 

i
  

Apparent viscosity 

             a

 s








 =  

i

1 +  ki

o











2  

equations are not identical but provided k > 0 and you have a spectrum of 
relaxation times, they are of similar form and give a close match. 
 
     
 

γ . (ω) (ω) 

LVE data Non linear behaviour 

no k in 
equation 

non linear 
term 

Cox Merz Rule → is an  accidental coincidence ! 
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Summary of this important section. 
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Appendix 1 
Rheological data. Golden Syrup 

A high viscosity Newtonian Fluid.  
Note. No Shear thinning, very little elasticity, G’ low, and Cox Merz obeyed.  
 
Apparent visocosity 

Golden Syrup at 25oC

1

10

100

0.1 1 10 100

Shear Rate [s-1]

ηa

[Pa.s]

 
 

Golden Syrup at 25oC (1% Strain)

1
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1 10

Frequency [rad/s]
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Golden Syrup at 25oC (Cox-Merz)

1

10

100

1 10

Shear Rate [s-1] / Frequency [rad/s]

η*

100

ηa
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Appendix 2 
Rheological data. A molten Polyethylene 

( typical data for a commercial PE) 
A high viscosity viscoelastic Fluid.  
Note. Shear thinning, viscoelasticity, G’ and G’’ similar magnitude. 
Cox Merz obeyed.  
 
Apparent and Complex viscosity; showing shear thinning and Cox Merz rule 
behaviour. 
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Strain sweep showing linear regime 
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Frequency sweep showing viscoelastic response. 
 
Data shows classic shear thinning of complex viscosity. Also scross over for G’, G’’ 
curves. 
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