
Section 2.  

  The application of Non Newtonian constitutive equations to simple 

engineering flow geometries. 

Application of simple constitutive equations to pipe /capillary and channel flow. 

Pipes / capillaries.  Easy experimentally, however results can be difficult to 

interpret.  Problem is close to many engineering situations. 

Relevance. Engineering calculations, capillary rheometry, process 

understanding. 

1) 2) 3) 

Laminar Newtonian flow  Re <   2,000  

(Revision) 

Re =  u 2 r /


r
 
 0

L

 P

P P + dp dx
 dx

τw 

(x + dx, P + dP) (x, P) 

 = 0 

 

Force balance 

    2 rdx -  
dP
dx

dx r2 =  0  

    =  
r
2

 
dP
dx

 =  
r
2

 
P
L

 
 = ΔP r 
      2L 

General Result
Shear stress is a  
linear function of 
radius 

At wall   o =  
ro
2

 
P
L

     



No difficulty here  

CET 2B. Section 2, Eng analytic flow -2011         1
   The link between pressure drop and wall shear stress 



Newtonian Constitutive equation 

    =  

  =   du

dr
 =  

r
2

 
P
L

 

Integrate with u =  0 at r = ro  

(Assume No slip at wall – care sometimes needed here.  We could add a slip 

velocity. See past Tripos question) 
Some high viscosity fluids can slip at the wall, they take the path of least resistance.  

 

Yields  u r  =  -
P

4L
ro

2 -  r2               Parabolic profile 

Volumetric flow      Q =  2  r u r  
o

ro
 dr  

Yields   =  
  ro

4 P
8 L Q

 

 
ΔP = 8L Q 
          ro

4  

 

 

Q 

ΔP 

γ . 

 

 
τ 

 

 

 

 
ΔP α  
ΔP α L 
ΔP α ro

-4 

As seen, the pressure drop is 
very sensitive to r. Hence in 
rheology it is crucial to know 
your geometry with precision 

 

 

                      Laminar, Newtonian and Linear 
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Note…… 

Shear rate  

   

du
dr

 =  
P

2L
 r =  

4 Q

 ro
4  r  

shear rate, linear with r 
for a Newtonian flow  

 

at wall,  
3
or 

Q 4
 = 


 o


              (for Newtonian fluid) 

u

Parabolic 
velocity 
profile



Shear stress 
varies  
linearly 
across 
tube



shear rate 
varies  
linearly 
across 
tube

. 

 and vary across capillary, this can lead to difficulties in interpretation for 

Non Newtonian fluids where 










 


. 

 
Capillary is a “variable stress Rheometer”, results in non-
uniform shear rate rheometer with complication for Non-
Newtonian Fluids 

 

 

 

    Capillary/Pipe flow is potentially “complex” rheologically, because the strain 

rate/stress is not constant across the capillary/pipe. 
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. Laminar pipe / Capillary  flow of power law fluid  
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Force balance,  (as before)   =  
r
2

 
P
L

 

Constitutive equation, 
L

Pr

dr

du
kk

n
n 





  

2
 =   =   =    

Integrate assuming,    u = o    at       r = ro  

u r  =  -
P

2L k






1
n n

n +  1
r0

n + 1
n

  r

n + 1

n
















   m s  

 

volumetric flow Q 

 

 

 

 

r 
 0

L

 P

γ . Q 

τ ΔP

 



  
 

      Q

rn  

1 +3n 
k  L 2 = n

n

n

1 +3n 

0






















P  

Velocity profile. Power law 

n < 1 Flatter velocity Profile 
closer to 
plug flow 

n =  mathematical 
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n < 1 Shear thinning, Velocity profile is flatter, generally goods news.  Sharper 

RTD, but still low velocity components at wall.  HT and MT correlations not 

significantly different to Newtonian 

E ( t )

time

n = 1

N < 1

Residence time  
distribution

pressure difference

P

Flowrate Q

n = 1

N < 1

n = 1 

Screw Extruder 
– ΔP ~ 100 bar 

Q1 Q2 

break 
through

n = 1, long tail

n < 1, ‘tighter’ RTD 
but still a tail 

i i



τ = ± τy + γ η
. Laminar pipe flow of Bingham plastic 

 


Direction of 
flow

pressure gradient

r
 
 0


Force balance

r P/2L
τy  P P + dP

Flow 
R        L

τ = 0
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Constitutive equation  

In region where there is relative fluid motion 

    =     y +  

  

    check  acts against motion of fluid 

scalar, need to assign the 
correct sign 

y  

no relative 
motion, plug 
flow core 

γ . τ > τy τ = ± τy + η

τ < τy γ = 0 .

 

   =  y +  

  =  y +  

du
dr

 =  
r
2

 
P
L

 

assume when r = ro , u = 0 , no slip bc 

   u =  -
P
4L

 ro
2 -  r2  +  

 y


 ro -  r  for τ > τy 

(check eqn. let  y = 0,  then Newtonian profile, OK)  

when  < y no relative shear i.e., 

  =  0  

    
du
dr

 =  0  i.e., Plug flow 

 =  
r
2

 
P
L 

          r1 =  2 y
L
P

 



τ = τy + ηγ . 
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Volumetric flow 

    Q =  u1 r1
2  +  2 U r 

ri

ro
  rdr  

The effect of changing P, for given y 

 

P P P 
 1

 
 2

 
 3< <

conclusion. Flow is more plug flow at low P

E (t)

t

r
 
 1



parabolic

plug flow core

u
 
 1 r1, τy, u1 

u = 0 at r = ro w 

 = 0 

y 

plug flow 
core 

Annular 
flow 

(ex toothpaste) 

No mixing 

Low P 
low ΔP 

High P 

y 
y 

y 

Low P more plug flow component  High P 



Pipe flow complications.    (we consider two). Rheology 

Capillaries sometimes are used as a rheometer . Issues to consider 

 

       What is the shear rate at the wall?     
1   

w get this from => P 
 

w we need to know wall shear rate for any arbitrary rheology  
 

Variable 
stress 

 

 

 

 

 
 = a  

. 

Measure  => w 

Obtain apparent viscosoty 

 

w => we need to know this  
.

 

 

 

       Entry flow pressure drop. 
2   
E

Pressure transducer = Pt 
Pe 

 

 

 
Po  

Pc  

 
Pt = Pt – Po = Pe + Pc 

 

 

 
Worry about entry pressure drop Pe 
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Use  pipe flow P (Q) to identify form of constitutive equation. 

 Measure pressure drop (ΔP) as function of volumetric flowrate (Q) 

Rabinowitsch Correction 

 = ηa γ 
. 

We need to know shear stress and shear rate at some location. 

Go to the wall! 

      o =  
ro

2
 
P
L

… (1)              Fine! 

We now need .shear rate at wall  More difficult, but we know Q 



o

Q =  2 r u r  
o

ro
 dr =  2 r2

2
u r 










o

ro




 -   

r2

2
du

o

ro
  

     integrate by parts assumes no slip at the wall 

BC    r =  ro ,       u =  0 

Q =  -   r2 
o

ro


du
dr

dr  

Change variables!                Express  in terms  

 = or 
        ro 

Now         
r

 ro
 =  


  o

 

So Q =  - 
ro

3

o
3

 


 
o

 o
  2d  expressed in terms of  

           
1

 ro
3  Q o

3 =  -



o

o
   2d  

Differentiate , wrt  ,    note Q is a function of o  o  

                       
1

 ro
3  o

3 dQ
do

 +  3 o
2Q









 =  -


 o  o

2  

note  o =  
ro

2
 
P
L
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shear rate at the wall 

             

 o  =  

1

 ro
3 3Q +  P

dQ
 d P 







 …. (2) 

volumetric flow rate (Q) 
differential of Q Vs ΔP 

    inverse slope of P Q  curve 

So if you know   P Q 

P

Q

1/ Q/P

 

From (1) yields  ,    from (2) yield o




o
 

 
 = ηa γ 

. 

o = ηa γo 
.  

 




 
 a

Shear 
stress 
at wall

Shear rate at wall
Shear rate

Apparent  
Viscosity

 

flow curve 

o 

γ . 
γo 
. 

 
We have obtained the ‘flow curve’ for fluid without presupposing a rheology  
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A further complication.     Less mathematical, but important.  Entry pressure drop. 
Most capillary rheometers have an entry section of where there is an associated 
entry pressure drop. 

L

r
 
 0

P P

P

 
 1

 
 2

 
 t

nro 

Newtonian   n ~ 1 
Polymers n ~ 100 

Use “Bagley” correction. Requires experiments with Different L ro  ratios 
Bagley (generally incorrectly) assumed that entry P was equivalent to an added 
capillary length nro                  

o =  
Pt  ro

2 L +  nro  
added length 

If Bagley assumption is true then the lines will go through a common intercept 
(sometimes they don’t!)   
 

P

L / r
 
 0

10 20 40n

Q2 

Q1 

Q1 

Q2 

Q1 

e} ntry ΔP 

Q1 

Analytic and numerical solns give P1 = 2.3 o              0  in capillary            
then n=1.15 But beware, for polymer fluids n >> 1 
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Rotational, (Torsion flow) 

 Relevant to Couette viscometers and stirred tank mixing vessels 

  
Engineering flows 

Beware Taylor Vortices    (Large gaps > 1 cm) Re > 1 

 

Flow in circular orbits what is 


 ? 

G.I. Taylor 

Couette:- Viscosity of gases η ~ 10-5   Measured by Maurice Couette. 

r
 
1

r
 
 2

L

Concentric cylinder apparatus

inner radius    r1  , �
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Remove rotational part of    solid body rotation 

 

  =  

r +  dr   +  d  -  r +  dr 
dr

             

  =  r

d
dr

 

  

  

o

rotate inner or outer 
cylinder, measure torque 
on inner or outer cylinder

uter radius  r2  , 


Radius r1   angular vel 

Radius r2   angular vel 

 = v 
       r 

What is  for flows in concentric orbits? γ.

 = v 
       r 

Toroidal vortices if 
Re > 1. These are 
caused by inertia 
and thus small 
gaps of order 1 
mm should be used 
for such 
experiments 

r
(r+dr) 

(r+dr)(+d) 

drr 

shear rate 
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haft ro ting in a Newtonian fluid 

  

 
tation

S ta

 

Net torque   given by  

For steady ro   

  =   0
      n =  0 

           

      

st tive uation                      

  =    +  2r  L =  0n 1

  =  - 2r2L

2

1  

Con itu   Eq  =  

    r

d
dr

 

So     
drL

dr- = 
2

 31

BC      = 1 at r = r1 

       = 0 at r = r2 say 

at r                                       1 -            r  =
4L

 
1 1

r1
2  -  

1

r2








 

r

r
 
 1




 
 1

ontiacceleraangular  = 
inertia ofmoment  =  I where

 I = 



n

Length L 

Angular velocity at r 

Positive clockwise 
 linear. Force balance 
  P = mx 

shear st

.. 

equals 0 

(r1, 1) 

 

shaft 
ress 

 = -  1 
2L 

1 
r2 

= r d 
          dr 

.
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at r1 gives                                               1
r r2

2

r2
2
1
2

4
1
L

 =
 -  r1

2 

   -   =    
r1
2r2 1 1

r2
2 -  r1

2 
2 1

r1
2  -  

1

r2
2









… (1) 

(r) ind of  

 

Shear rate 

Surprise result:- 
 


 d

 =  r
rd

 =  - 2 r1
2r2

2

r2
2 -  r1

2  
1

r2  

if (r  – r1) small and r1 llarge 

 a constant across gap 

2

     


  

So     =  
4
1
L

1

r1
2   

r2

1
2









          The Couette viscometer 




 

Stirred tanks  60 rpm 1 = 2 = 6.28 rad s  

  Shaft  D = 25 mm 

   Eqn (1) gives  =  
1
2

 at r =  0.017 m 

   poor. 
 

Mixing very
 
 

So use an impeller! 

 

 

 

 

 

 

 at r 

r1 

1

Velocity profile independent
of viscosity. e.g. for water, 

 

bitumen and honey. 
 
But torque will be different 

Couette viscometer 
Large surface area = large torque 

for small gap:- 
Large r  = 20cm 1

Small gap r2 – r1 = 0.5mm ~ 1mm 
Constant γ :- across gap . 



 

Power Law Fluid in rotational flow 
 = kn.  

Torque equation                       1 =  - 2 r2 L 
As before n ≈ 0.6 
γ = r d 
         dr 

                  - 2 r2 Lk r
d
dr






n

 

Yields 

 1 -   r  =  
1

2kL






1
n n

2
1

r1
2 N  -  

1

r2 n













 

 
        For n < 1. 
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r
 
 1

power law

Newtonian

More localised than 
Newtonian. Power 
law mixing in 
rotational flow is 
more difficult than 
for Newtonian 
liquids. 

n < 1

 α  1 
r2



 
Bingham Plastic in rotational flow scalar and a property of the fluid 
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 τ = ± τy + γ η
. 

 
 1

 
 
 
 

1 =  - 2r L2                              = -
1

2L
 

1

r2  

 

 

 

1 =  - 2 Lr 2 - y   r
d
dr







 

                 1 -   r  =  
 y


ln

r1
r

 +  
1

4L
1

r1
2  -  

1

r2









 

Binghams have a mixing problem 
 
 
 
 
 
 

r




�
y

y is negative 


�


(r1, 1) 

as before 

γ . τ =  - τy + η

y 

stagnant outer region

r > r2 γ = 0 
. no flow r2

2 = 1    1 
2 L   y



r
 
 1

Newtonian

Stagnent region


 
 y

Like w

Increase  until all fluid is being sheared 

ithin  the shear region 

 
Binghams can have serious mixing problems. Stirred vessels can have stagnant out 
regions.  
 
Different geometries / Different forces balance elements. 

 

 

 

 

 

             Time for supervision 1 
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